214 research outputs found

    Sigma-models having supermanifolds as target spaces

    Get PDF
    We study a topological sigma-model (AA-model) in the case when the target space is an (m0∣m1m_0|m_1)-dimensional supermanifold. We prove under certain conditions that such a model is equivalent to an AA-model having an (m0−m1m_0-m_1)-dimensional manifold as a target space. We use this result to prove that in the case when the target space of AA-model is a complete intersection in a toric manifold, this AA-model is equivalent to an AA-model having a toric supermanifold as a target space.Comment: 6 pages,late

    Hamiltonian Monodromy Via Picard-lefschetz Theory

    Get PDF
    Le texte intégral associé à ce dépÎt est la version initiale du preprint de 2001.International audienceIn this paper, we investigate the "Hamiltonian'' monodromy of the fibration in Liouville tori of certain integrable systems via (real) algebraic geometry. Using Picard-Lefschetz theory in a relative Prym variety, we determine the Hamiltonian monodromy of the "geodesic flow on SO(4)SO(4)''. Using a relative generalized Jacobian, we prove that the Hamiltonian monodromy of the spherical pendulum can also be obtained by Picard-Lefschetz formula

    A combinatorial formula for homogeneous moments

    Get PDF
    We establish a combinatorial formula for homogeneous moments and give some examples where it can be put to use. An application to the statistical mechanics of interacting gauged vortices is discussed.Comment: 8 pages, LaTe

    The geometry of antiferromagnetic spin chains

    Full text link
    We construct spin chains that describe relativistic sigma-models in the continuum limit, using symplectic geometry as a main tool. The target space can be an arbitrary complex flag manifold, and we find universal expressions for the metric and theta-term.Comment: 31 pages, 3 figure

    Cohomology of toric line bundles via simplicial Alexander duality

    Full text link
    We give a rigorous mathematical proof for the validity of the toric sheaf cohomology algorithm conjectured in the recent paper by R. Blumenhagen, B. Jurke, T. Rahn, and H. Roschy (arXiv:1003.5217). We actually prove not only the original algorithm but also a speed-up version of it. Our proof is independent from (in fact appeared earlier on the arXiv than) the proof by H. Roschy and T. Rahn (arXiv:1006.2392), and has several advantages such as being shorter and cleaner and can also settle the additional conjecture on "Serre duality for Betti numbers" which was raised but unresolved in arXiv:1006.2392.Comment: 9 pages. Theorem 1.1 and Corollary 1.2 improved; Abstract and Introduction modified; References updated. To appear in Journal of Mathematical Physic

    The frequency map for billiards inside ellipsoids

    Full text link
    The billiard motion inside an ellipsoid Q \subset \Rset^{n+1} is completely integrable. Its phase space is a symplectic manifold of dimension 2n2n, which is mostly foliated with Liouville tori of dimension nn. The motion on each Liouville torus becomes just a parallel translation with some frequency ω\omega that varies with the torus. Besides, any billiard trajectory inside QQ is tangent to nn caustics Qλ1,...,QλnQ_{\lambda_1},...,Q_{\lambda_n}, so the caustic parameters λ=(λ1,...,λn)\lambda=(\lambda_1,...,\lambda_n) are integrals of the billiard map. The frequency map λ↊ω\lambda \mapsto \omega is a key tool to understand the structure of periodic billiard trajectories. In principle, it is well-defined only for nonsingular values of the caustic parameters. We present four conjectures, fully supported by numerical experiments. The last one gives rise to some lower bounds on the periods. These bounds only depend on the type of the caustics. We describe the geometric meaning, domain, and range of ω\omega. The map ω\omega can be continuously extended to singular values of the caustic parameters, although it becomes "exponentially sharp" at some of them. Finally, we study triaxial ellipsoids of \Rset^3. We compute numerically the bifurcation curves in the parameter space on which the Liouville tori with a fixed frequency disappear. We determine which ellipsoids have more periodic trajectories. We check that the previous lower bounds on the periods are optimal, by displaying periodic trajectories with periods four, five, and six whose caustics have the right types. We also give some new insights for ellipses of \Rset^2.Comment: 50 pages, 13 figure

    Special lagrangian fibrations on flag variety F3F^3

    Full text link
    One constructs lagrangian fibrations on the flag variety F3F^3 and proves that the fibrations are special.Comment: 19 page

    Searching for K3 Fibrations

    Full text link
    We present two methods for studying fibrations of Calabi-Yau manifolds embedded in toric varieties described by single weight systems. We analyse 184,026 such spaces and identify among them 124,701 which are K3 fibrations. As some of the weights give rise to two or three distinct types of fibrations, the total number we find is 167,406. With our methods one can also study elliptic fibrations of 3-folds and K3 surfaces. We also calculate the Hodge numbers of the 3-folds obtaining more than three times as many as were previously known.Comment: 21 pages, LaTeX2e, 4 eps figures, uses packages amssymb,latexsym,cite,epi

    New Examples of Systems of the Kowalevski Type

    Full text link
    A new examples of integrable dynamical systems are constructed. An integration procedure leading to genus two theta-functions is presented. It is based on a recent notion of discriminantly separable polynomials. They have appeared in a recent reconsideration of the celebrated Kowalevski top, and their role here is analogue to the situation with the classical Kowalevski integration procedure.Comment: 17 page

    On the spectra of the quantized action-variables of the compactified Ruijsenaars-Schneider system

    Full text link
    A simple derivation of the spectra of the action-variables of the quantized compactified Ruijsenaars-Schneider system is presented. The spectra are obtained by combining Kahler quantization with the identification of the classical action-variables as a standard toric moment map on the complex projective space. The result is consistent with the Schrodinger quantization of the system worked out previously by van Diejen and Vinet.Comment: Based on talk at the workshop CQIS-2011 (Protvino, Russia, January 2011), 12 page
    • 

    corecore